
Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

Random Variables (Con’t)

1

Computer Applications for Engineers
ET 601

Office Hours: (BKD 3601-7)
Wednesday 9:30-11:30
Wednesday 16:00-17:00
Thursday 14:40-16:00

Families of Discrete RVs

2 0,1 , , 0p n

Families of Continuous RVs

3

, 0

Bernoulli Trial

4

 A Bernoulli trial involves performing an experiment once
and noting whether a particular event A occurs.
 The outcome of the Bernoulli trial is said to be
 a “success” if A occurs and

 a “failure” otherwise.

 Success probability = p

 We may view the outcome of a single Bernoulli trial as the
outcome of a toss of an unfair coin for which the probability
of heads (success) is p = P(A) and the probability of tails
(failure) is 1−p.

Bernoulli Trials

5

 Repeat a Bernoulli trial multiple times

 Assumptions:
 The trials are independent. (The outcome from one trial has no

effect on the outcome to be obtained from any other trials.)
 The probability of a success p in each trial is constant.

 An outcome of the complete experiment is a sequence of
successes and failures which can be denoted by a sequence
of ones and zeroes.

Recall: Sequence of Coin Tosses

6

 Use 1 to represent Heads; 0 to represent Tails

 rand(1,120) < 0.5
 randi([0 1],1,120)

Bernoulli Trials

7

010001011000101110000101011100…

The number of 1s in n trials is a
binomial random variable with
parameter (n,p)

The number of trials
until the next 1 is a
geometric1 random
variable.

The number of 0
until the next 1 is a
geometric0 random
variable.

In the limit, as
n and p 0
while np = ,

The number of 1s is a Poisson
random variable with parameter
= np.

Poisson Process

8

 We start by picturing a Poisson Process as a random
arrangement of “marks” (denoted by × or) on the time
axis.

 These marks usually indicate the arrival times or occurrences
of event/phenomenon of interest.

 In the language of “queueing theory,” the marks denote arrival
times.

Time

Poisson Process: Examples

9

 Sequence of times at which
lightning strikes occur or mail
carriers get bitten within some
region

 Emission of particles from a
radioactive source

 Occurrence of
 serious earthquakes
 traffic accidents
 power outages
in a certain area.

 Arrivals of
 telephone calls at a switchboard

or at an automatic phone-
switching system

 urgent calls to an emergency
center

 (filed) claims at an insurance
company

 incoming spikes (action potential)
to a neuron in human brain

 Page view requests to a website

Homogeneous Poisson Process

10

 We focus on one kind of Poisson process called homogeneous
Poisson process.
 From now on, when we say “Poisson process”, what we mean is

“homogeneous Poisson process”.

 The first property that you should remember for this process
is that there is only one parameter for Poisson process.
 This parameter is the rate or intensity of arrivals (the average

number of arrivals per unit time.)
 We use to denote this parameter.

 How can , which is the only parameter, controls Poisson
process?
 The key idea is that the Poisson process is as

random/unstructured as a process can be.

Poisson Process?

11

One of these is a realization of a two-dimensional Poisson point
process and the other contains correlations between the points.
One therefore has a real pattern to it, and one is a realization of
a completely unstructured random process.

Poisson Process

12

All the structure that is
visually apparent is
imposed by our own
sensory apparatus, which
has evolved to be so
good at discerning
patterns that it finds
them when they’re not
even there!

Poisson Process: Small Slot Analysis

13

(discrete time approximation)

Time

1 2 3

N1 = 1 N2 = 2 N3 = 1

W1 W2 W3 W4

Time

In the limit, there is at most one arrival in any slot. The numbers of arrivals on the slots are
i.i.d. Bernoulli random variables with probability p1 of exactly one arrivals = where is the
width of individual slot.

The total number of arrivals on n slots is a
binomial random variable with parameter
(n,p1)

D1
The number of slots between adjacent
arrivals is a geometric random variable.

In the limit, as the slot length gets smaller, geometric exponential
binomial Poisson

Poisson Process

14

Time

1 2 3

N1 = 1 N2 = 2 N3 = 1

The number of arrivals N1, N2 and N3 during non-overlapping time intervals
are independent Poisson random variables with mean = the length of the
corresponding interval.

The lengths of time between adjacent arrivals W1, W2, W3 … are i.i.d.
exponential random variables with mean 1/.

W1 W2 W3 W4

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

Entropy

15

Computer Applications for Engineers
ET 601

Office Hours: (BKD 3601-7)
Wednesday 9:30-11:30
Wednesday 16:00-17:00
Thursday 14:40-16:00

Entropy

16

 Quantify/measure
 amount of randomness (uncertainty, ambiguity) the RV has
 The number of bits (in average) that are needed to describe a

realization of the random variable (provided that optimal
compression is used).

 Convention: .
 Reason:

 In MATLAB, first construct a row vector pX for the pmf of
X. Then, find -pX*((log2(pX))').

 2 2log logX X X
x

H X p x p x p X

0
lim log 0
x

x x

>> syms x; limit(x*log(x),x,0)

ans =

0

Differential Entropy

17

 The formula discussed earlier is for discrete RV.

 For continuous RV, we consider the differential entropy:

 2 2log logX X Xh X f X f x f x dx

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

Generating Random Variables

18

Computer Applications for Engineers
ET 601

Office Hours: (BKD 3601-7)
Wednesday 9:30-11:30
Wednesday 16:00-17:00
Thursday 14:40-16:00

An interesting number

19

 Here is an interesting number:

0.814723686393179

 This is the first number produced by the MATLAB random
number generator with its default settings.

 Start up a fresh MATLAB, set format long, type
rand, and it’s the number you get.
 Verified in MATLAB 2013a

It may seem perverse to use a computer, that most precise and deterministic of
all machines conceived by the human mind, to produce “random” numbers. More
than perverse, it may seem to be a conceptual impossibility. Any program, after all,
will produce output that is entirely predictable, hence not truly “random.”

[Numerical Recipes, Ch 7]

Pseudorandom Number

20

 Random numbers were originally either manually or mechanically
generated, by using such techniques as spinning wheels, or dice
rolling, or card shuffling.

 The modern approach is to use a computer to successively
generate pseudorandom numbers.
 Although they are deterministically generated, they approximate

independent uniform (0, 1) random variables.
 So, “random” numbers in MATLAB are not unpredictable. They are

generated by a deterministic algorithm.
 The algorithm is designed to be sufficiently complicated so that its output

appears to be random to someone who does not know the algorithm, and can
pass various statistical tests of randomness.

 Our assumption
 Assume that we have a good pseudorandom number generators.
 Example: the rand command in MATLAB.

rng

21

 The sequence of numbers produced by rand is determined
by the internal settings of the uniform random number
generator that underlies rand, randi,and randn.

 You can control that shared random number generator using
rng.
 This can be useful for controlling the repeatability of your

results.

 http://www.mathworks.com/support/2013b/matlab/8.2/
demos/controlling-random-number-generation.html

22

 Multiplicative (Linear) Congruential Generator (MCG)
 One of the most common approaches
 Also known as
 prime modulus multiplicative linear congruential generator

(PMMLCG)
 Lehmer generator (because it is invented by Lehmer.)

 Start with the seed:
 Recursion:
 Normalization:
 Multiplier a and modulus m are some chosen positive

integers.
 m should be chosen to be a large prime number.

Multiplicative Congruential Generator
(MCG)

Example

23

 a = 3, m = 7, x0 = 1.

x ax z

1
3
2
6
4
5
1
3
2
6

3
9
6
18
12
15
3
9
6
18

0.1429
0.4286
0.2857
0.8571
0.5714
0.7143
0.1429
0.4286
0.2857
0.8571

Example

24

 a = 3, m = 7, x0 = 2.

x ax z

2
6
4
5
1
3
2
6
4
5

6
18
12
15
3
9
6
18
12
15

0.2857
0.8571
0.5714
0.7143
0.1429
0.4286
0.2857
0.8571
0.5714
0.7143

“Minimal Standard Generator”

25

 m = 231 − 1 = 2147483647 and a = 75 = 16807

 Recommended in a 1988 paper by Park and Miller
 S. K. Park and K. W. Miller, Random number generators: Good ones are

hard to find, Communications of the ACM, 31 (1988), pp. 1192–
1201.

 Used in early (version 4) implementations of MATLAB.
 In 1995, version 5 of MATLAB introduced a completely different

kind of random number generator based on the work of George
Marsaglia.

 In 2007, version 7.4 of MATLAB uses an algorithm known as the
MersenneTwister, developed by M. Matsumoto and T.
Nishimura.

rng default/shuffle

26

 Every time you start MATLAB, the
generator resets itself to the same state.

 You can reset the generator to the startup
state at any time in a MATLAB session
(without closing and restarting MATLAB)
by
 rng('default')
 rng default

 To avoid repeating the same results when
MATLAB restarts:
 Execute the command
 rng('shuffle')
 rng shuffle
 It reseeds the generator using a different seed

based on the current time.

rng: Save and Restore the Generator
Settings

27

Save the current
generator settings in
s

Restore the saved
generator settings

The first call to randi
changed the state of the
generator, so the second
result is different.

Generation of arbitrary RVs

28

 There are many built-in families of RV in MATLAB that can
be generated by random.

 Popular families are provided.
 Binomial, Exponential, Geometric, Normal, Poisson, Uniform
 Beta, Birnbaum-Saunders, Burr Type XII, Chi-Square, Extreme

Value, F, Gamma, Generalized Extreme Value, Generalized
Pareto, Hypergeometric, Inverse Gaussian, Logistic,
Loglogistic, Lognormal, Nakagami, Negative Binomial,
Noncentral F, Noncentral t, Noncentral Chi-Square, Rayleigh,
Rician, Student's t, t Location-Scale, Weibull

 doc random
 How to generate RVs whose families are not built-in?

Bernoulli Trials

29

 We want to generalize the old technique.

 rand(1,120) < 0.5
 randi([0 1],1,120)

1/ 2, 0,
1/ 2, 1,
0, otherwise.

X

x
p x x

 To generate a RV X whose
pmf is given by

 First use rand create a
uniform RV U.

 Then, set
1, 1/ 2,
0, 1/ 2.

U
X

U

 To generate a RV X whose
pmf is given by

 First use rand create a
uniform RV U.

 Then, set

, 1,

1 , 0,
0, otherwise.

X

p x
p x p x

1, ,
0, .

U p
X

U p

clear all; close all;

S_X = [3 4];
p_X = [1/3 2/3];

n = 1e6;

U = rand(1,n);
V = [U < 2/3];
X = S_X(V+1);

hist(X)
rf = hist(X,S_X)/n;
stem(S_X,rf,'rx')
hold on
stem(S_X,p_X,'bo')
xlim([min(S_X)-1,max(S_X)+1])
legend('Rel. freq. from sim.'...
 ,'pmf p_X(x)')
xlabel('x')
grid on

Example

30

 To generate a RV X whose pmf is
given by

 First use rand to create a
uniform RV U.

 Then, set

 Finally, map to
 .

 Of course, we can combine all
the steps into just one line:

1/ 3, 3,
2 / 3, 4,
0, otherwise,

X

x
p x x

1, 2 / 3,
0, 1/ 3.

U
V

U

2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

Rel. freq. from sim.
pmf pX(x)

X = S_X([rand(1,n) < 2/3]+1);

Example

31

 To generate a RV X whose pmf is
given by

 First use rand to create a
uniform RV U.

 Then, set

 Finally, map to
 .

1/ 6, 3,
1/ 3, 4,
1/ 2, 8,
0, otherwise.

X

x
x

p x
x

1, 0 1/ 6,
2, 1/ 6 1/ 2,
3, 1/ 6 1,

U
V U

U

clear all; close all;

S_X = [3 4 8];
p_X = [1/6 1/3 1/2];

n = 1e6;

F_X = cumsum(p_X);
U = rand(1,n);
[dum,V] = histc(U,[0 F_X/F_X(end)]);
X = S_X(V);

hist(X)
rf = hist(X,S_X)/n;
stem(S_X,rf,'rx')
hold on
stem(S_X,p_X,'bo')
xlim([min(S_X)-1,max(S_X)+1])
legend('Rel. freq. from sim.'...
 ,'pmf p_X(x)')
xlabel('x')
grid on

2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

Rel. freq. from sim.
pmf pX(x)

histc vs hist

32

 N = hist(U,centers)
 Bins’ centers are defined by the vector centers.

 The first bin includes data between -inf and the first center and the last bin includes
data between the last bin and inf.

 N(k) count the number of entries of vector U whose values falls inside the
kth bin.

 N = hist(U,edges)
 Bins’ edges are defined by the vector edges.
 N(k) count the value U(i) if
edges(k) ≤ U(i) < edges(k+1).

 The last (additional) bin will count any values of U that match
edges(end).

 Values outside the values in edges are not counted.
 Use -inf and inf in edges.

 [N,BIN_IND] = histc(U,EDGES) also returns vector
BIN_IND indicating the bin index that each entry in U sorts into.

Example: histc

33

>> p_X = [1/6 1/3 1/2];
>> F_X = cumsum(p_X)

F_X =

0.1667 0.5000 1.0000

>> U = rand(1,5)

U =

0.2426 0.9179 0.9409 0.1026 0.8897

>> [dum,V] = histc(U,[0 F_X])

dum =

1 1 3 0

V =

2 3 3 1 3

Loops

34

 Loops are MATLAB constructs that permit us to execute a
sequence of statements more than once.

 There are two basic forms of loop constructs:
 while loops and
 for loops.

 The major difference between these two types of loops is in
how the repetition is controlled.
 The code in a while loop is repeated an indefinite number of

times until some user-specified condition is satisfied.
 By contrast, the code in a for loop is repeated a specified

number of times, and the number of repetitions is known
before the loops starts.

while loop

35

 General form:

 The statements in the body are
repeatedly executed as long as the
expression expr remains true.

while expr
body

end

clear all; close all;

S_X = [3 4 8];
p_X = [1/6 1/3 1/2];

n = 1e6;

U = rand(1,n);
V = zeros(size(U)); %Preallocation
for k = 1:n
 F = p_X(1);
 m = 1;
 while (U(k) > F)
 m = m+1;
 F = F+p_X(m);
 end
 V(k) = m;
end
X = S_X(V);

hist(X)
rf = hist(X,S_X)/n;
stem(S_X,rf,'rx')
hold on
stem(S_X,p_X,'bo')
xlim([min(S_X)-1,max(S_X)+1])
legend('Rel. freq. from sim.'...
 ,'pmf p_X(x)')
xlabel('x')
grid on

datasample

36

clear all; close all;

S_X = [3 4 8];
p_X = [1/6 1/3 1/2];

n = 1e6;

X = datasample(S_X,n,'Weights',p_X);

hist(X)
rf = hist(X,S_X)/n;
stem(S_X,rf,'rx')
hold on
stem(S_X,p_X,'bo')
xlim([min(S_X)-1,max(S_X)+1])
legend('Rel. freq. from sim.'...
 ,'pmf p_X(x)')
xlabel('x')
grid on

