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Families of Discrete RVs
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Bernoulli Trial
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 A Bernoulli trial  involves performing an experiment once 
and noting whether a particular event A occurs. 
 The outcome of the Bernoulli trial is said to be
 a “success” if A occurs and

 a “failure” otherwise.

 Success probability = p

 We may view the outcome of a single Bernoulli trial as the 
outcome of a toss of an unfair coin for which the probability 
of heads (success) is p = P(A) and the probability of tails 
(failure) is 1−p.



Bernoulli Trials
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 Repeat a Bernoulli trial multiple times

 Assumptions:
 The trials are independent. (The outcome from one trial has no 

effect on the outcome to be obtained from any other trials.)
 The probability of a success p in each trial is constant.

 An outcome of the complete experiment is a sequence of 
successes and failures which can be denoted by a sequence 
of ones and zeroes.



Recall: Sequence of Coin Tosses
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 Use 1 to represent Heads; 0 to represent Tails

 rand(1,120) < 0.5
 randi([0 1],1,120)



Bernoulli Trials
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010001011000101110000101011100…

The number of 1s in n trials is a 
binomial random variable with 
parameter (n,p)

The number of trials 
until the next 1 is a 
geometric1 random 
variable.

The number of 0 
until the next 1 is a 
geometric0 random 
variable.

In the limit, as
n  and p  0
while  np = ,

The number of 1s is a Poisson 
random variable with parameter 
= np.



Poisson Process
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 We start by picturing a Poisson Process as a random 
arrangement of “marks” (denoted by × or ) on the time 
axis. 

 These marks usually indicate the arrival times or occurrences 
of event/phenomenon of interest.

 In the language of “queueing theory,” the marks denote arrival 
times.

Time



Poisson Process: Examples
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 Sequence of times at which 
lightning strikes occur or mail 
carriers get bitten within some 
region

 Emission of particles from a 
radioactive source

 Occurrence of
 serious earthquakes
 traffic accidents
 power outages
in a certain area.

 Arrivals of
 telephone calls at a switchboard 

or at an automatic phone-
switching system

 urgent calls to an emergency 
center

 (filed) claims at an insurance 
company

 incoming spikes (action potential) 
to a neuron in human brain

 Page view requests to a website



Homogeneous Poisson Process
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 We focus on one kind of Poisson process called homogeneous 
Poisson process. 
 From now on, when we say “Poisson process”, what we mean is 

“homogeneous Poisson process”.

 The first property that you should remember for this process 
is that there is only one parameter for Poisson process.
 This parameter is the rate or intensity of arrivals (the average 

number of arrivals per unit time.) 
 We use  to denote this parameter.

 How can , which is the only parameter, controls Poisson 
process? 
 The key idea is that the Poisson process is as 

random/unstructured as a process can be.



Poisson Process?
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One of these is a realization of a two-dimensional Poisson point 
process and the other contains correlations between the points. 
One therefore has a real pattern to it, and one is a realization of 
a completely unstructured random process.



Poisson Process
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All the structure that is 
visually apparent is 
imposed by our own 
sensory apparatus, which 
has evolved to be so 
good at discerning 
patterns that it finds 
them when they’re not 
even there!



Poisson Process: Small Slot Analysis
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(discrete time approximation)

Time

1 2 3

N1 = 1 N2 = 2 N3 = 1

W1 W2 W3 W4

Time

In the limit, there is at most one arrival in any slot. The numbers of arrivals on the slots are 
i.i.d. Bernoulli random variables with probability p1 of exactly one arrivals =  where  is the 
width of individual slot.

The total number of arrivals on n slots is a 
binomial random variable with parameter 
(n,p1)

D1
The number of slots between adjacent 
arrivals is a geometric random variable.

In the limit, as the slot length gets smaller, geometric exponential
binomial Poisson



Poisson Process
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Time

1 2 3

N1 = 1 N2 = 2 N3 = 1

The number of arrivals N1, N2 and N3 during non-overlapping time intervals 
are independent Poisson random variables with mean =   the length of the 
corresponding interval.

The lengths of time between adjacent arrivals W1, W2, W3 … are i.i.d. 
exponential random variables with mean 1/.

W1 W2 W3 W4



Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

Entropy

15

Computer Applications for Engineers
ET 601

Office Hours: (BKD 3601-7)
Wednesday 9:30-11:30
Wednesday 16:00-17:00
Thursday  14:40-16:00



Entropy
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 Quantify/measure
 amount of randomness (uncertainty, ambiguity) the RV has
 The number of bits (in average) that are needed to describe a 

realization of the random variable (provided that optimal 
compression is used).

 Convention: .
 Reason: 

 In MATLAB, first construct a row vector pX for the pmf of 
X. Then, find -pX*((log2(pX))').

       2 2log logX X X
x

H X p x p x p X      

0
lim log 0
x

x x




>> syms x; limit(x*log(x),x,0)

ans =

0



Differential Entropy
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 The formula discussed earlier is for discrete RV.

 For continuous RV, we consider the differential entropy:

       2 2log logX X Xh X f X f x f x dx      



Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

Generating Random Variables

18

Computer Applications for Engineers
ET 601

Office Hours: (BKD 3601-7)
Wednesday 9:30-11:30
Wednesday 16:00-17:00
Thursday  14:40-16:00



An interesting number
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 Here is an interesting number:

0.814723686393179

 This is the first number produced by the MATLAB random 
number generator with its default settings. 

 Start up a fresh MATLAB, set format long, type 
rand, and it’s the number you get.
 Verified in MATLAB 2013a

It may seem perverse to use a computer, that most precise and deterministic of
all machines conceived by the human mind, to produce “random” numbers. More
than perverse, it may seem to be a conceptual impossibility. Any program, after all,
will produce output that is entirely predictable, hence not truly “random.”

[Numerical Recipes, Ch 7]



Pseudorandom Number
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 Random numbers were originally either manually or mechanically 
generated, by using such techniques as spinning wheels, or dice 
rolling, or card shuffling. 

 The modern approach is to use a computer to successively 
generate pseudorandom numbers.
 Although they are deterministically generated, they approximate 

independent uniform (0, 1) random variables.
 So, “random” numbers in MATLAB are not unpredictable. They are 

generated by a deterministic algorithm.
 The algorithm is designed to be sufficiently complicated so that its output 

appears to be random to someone who does not know the algorithm, and can 
pass various statistical tests of randomness.

 Our assumption
 Assume that we have a good pseudorandom number generators.
 Example: the rand command in MATLAB.



rng
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 The sequence of numbers produced by rand is determined 
by the internal settings of the uniform random number 
generator that underlies rand, randi,and randn. 

 You can control that shared random number generator using 
rng.
 This can be useful for controlling the repeatability of your 

results.

 http://www.mathworks.com/support/2013b/matlab/8.2/
demos/controlling-random-number-generation.html
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 Multiplicative (Linear) Congruential Generator (MCG)
 One of the most common approaches
 Also known as  
 prime modulus multiplicative  linear congruential generator 

(PMMLCG)
 Lehmer generator (because it is invented by Lehmer.)

 Start with the seed: 
 Recursion: 
 Normalization:  
 Multiplier a and modulus m are some chosen positive 

integers.
 m should be chosen to be a large prime number.

Multiplicative Congruential Generator 
(MCG)



Example
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 a = 3, m = 7, x0 = 1.

x ax z

1
3
2
6
4
5
1
3
2
6

3
9
6
18
12
15
3
9
6
18

0.1429
0.4286
0.2857
0.8571
0.5714
0.7143
0.1429
0.4286
0.2857
0.8571



Example
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 a = 3, m = 7, x0 = 2.

x ax z

2
6
4
5
1
3
2
6
4
5

6
18
12
15
3
9
6
18
12
15

0.2857
0.8571
0.5714
0.7143
0.1429
0.4286
0.2857
0.8571
0.5714
0.7143



“Minimal Standard Generator”
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 m = 231 − 1 = 2147483647 and a = 75 = 16807

 Recommended in a 1988 paper by Park and Miller
 S. K. Park and K. W. Miller, Random number generators: Good ones are 

hard to find, Communications of the ACM, 31 (1988), pp. 1192–
1201.

 Used in early (version 4) implementations of MATLAB. 
 In 1995, version 5 of MATLAB introduced a completely different 

kind of random number generator based on the work of George 
Marsaglia.

 In 2007, version 7.4 of MATLAB uses an algorithm known as the 
MersenneTwister, developed by M. Matsumoto and T. 
Nishimura.



rng default/shuffle
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 Every time you start MATLAB, the 
generator resets itself to the same state.

 You can reset the generator to the startup 
state at any time in a MATLAB session 
(without closing and restarting MATLAB) 
by 
 rng('default')
 rng default

 To avoid repeating the same results when 
MATLAB restarts: 
 Execute the command
 rng('shuffle')
 rng shuffle
 It reseeds the generator using a different seed 

based on the current time.



rng: Save and Restore the Generator 
Settings

27

Save the current 
generator settings in 
s

Restore the saved 
generator settings

The first call to randi
changed the state of the 
generator, so the second 
result is different.



Generation of arbitrary RVs
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 There are many built-in families of RV in MATLAB that can 
be generated by random.

 Popular families are provided.
 Binomial, Exponential, Geometric, Normal, Poisson, Uniform
 Beta, Birnbaum-Saunders, Burr Type XII, Chi-Square, Extreme 

Value, F, Gamma, Generalized Extreme Value, Generalized 
Pareto, Hypergeometric, Inverse Gaussian, Logistic, 
Loglogistic, Lognormal, Nakagami, Negative Binomial, 
Noncentral F, Noncentral t, Noncentral Chi-Square, Rayleigh, 
Rician, Student's t, t Location-Scale, Weibull

 doc random
 How to generate RVs whose families are not built-in?



Bernoulli Trials
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 We want to generalize the old technique.

 rand(1,120) < 0.5
 randi([0 1],1,120)

 
1/ 2, 0,
1/ 2, 1,
0, otherwise.

X

x
p x x


 


 To generate a RV X whose 
pmf is given by

 First use rand create a 
uniform RV U.

 Then, set 
1, 1/ 2,
0, 1/ 2.

U
X

U


  

 To generate a RV X whose 
pmf is given by

 First use rand create a 
uniform RV U.

 Then, set 

 
, 1,

1 , 0,
0, otherwise.

X

p x
p x p x


  


1, ,
0, .

U p
X

U p


  



clear all; close all; 
  
S_X = [3 4]; 
p_X = [1/3 2/3]; 
  
n = 1e6; 

  
U = rand(1,n); 
V = [U < 2/3]; 
X = S_X(V+1); 
  
hist(X) 
rf = hist(X,S_X)/n; 
stem(S_X,rf,'rx') 
hold on 
stem(S_X,p_X,'bo') 
xlim([min(S_X)-1,max(S_X)+1]) 
legend('Rel. freq. from sim.'... 
    ,'pmf p_X(x)') 
xlabel('x') 
grid on 

Example
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 To generate a RV X whose pmf is 
given by

 First use rand to create a 
uniform RV U.

 Then, set 

 Finally, map  to 
 .

 Of course, we can combine all 
the steps into just one line:

 
1/ 3, 3,
2 / 3, 4,
0, otherwise,

X

x
p x x


 


1, 2 / 3,
0, 1/ 3.

U
V

U


  

2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

 

 

Rel. freq. from sim.
pmf pX(x)

X = S_X([rand(1,n) < 2/3]+1);



Example
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 To generate a RV X whose pmf is 
given by

 First use rand to create a 
uniform RV U.

 Then, set 

 Finally, map  to 
 .

 

1/ 6, 3,
1/ 3, 4,
1/ 2, 8,
0, otherwise.

X

x
x

p x
x


   


1, 0 1/ 6,
2, 1/ 6 1/ 2,
3, 1/ 6 1,

U
V U

U

 
  
  

clear all; close all; 
  
S_X = [3 4 8]; 
p_X = [1/6 1/3 1/2]; 
  
n = 1e6; 
  
F_X = cumsum(p_X); 
U = rand(1,n); 
[dum,V] = histc(U,[0 F_X/F_X(end)]); 
X = S_X(V); 
  
hist(X) 
rf = hist(X,S_X)/n; 
stem(S_X,rf,'rx') 
hold on 
stem(S_X,p_X,'bo') 
xlim([min(S_X)-1,max(S_X)+1]) 
legend('Rel. freq. from sim.'... 
    ,'pmf p_X(x)') 
xlabel('x') 
grid on 
 

2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

 

 

Rel. freq. from sim.
pmf pX(x)



histc vs hist
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 N = hist(U,centers)
 Bins’ centers are defined by the vector centers.

 The first bin includes data between -inf and the first center and the last bin includes 
data between the last bin and inf.

 N(k) count the number of entries of vector U whose values falls inside the 
kth bin.

 N = hist(U,edges)
 Bins’ edges are defined by the vector edges.
 N(k) count the value U(i) if 
edges(k) ≤ U(i) < edges(k+1).  

 The last (additional) bin will count any values of U that match 
edges(end).  

 Values outside the values in edges are not counted.  
 Use -inf and inf in edges.

 [N,BIN_IND] = histc(U,EDGES) also returns vector 
BIN_IND indicating the bin index that each entry in U sorts into.  



Example: histc
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>> p_X = [1/6 1/3 1/2];
>> F_X = cumsum(p_X)

F_X =

0.1667    0.5000    1.0000

>> U = rand(1,5)

U =

0.2426    0.9179    0.9409    0.1026    0.8897

>> [dum,V] = histc(U,[0 F_X])

dum =

1     1     3     0

V =

2     3     3     1     3



Loops
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 Loops are MATLAB constructs that permit us to execute a 
sequence of statements more than once. 

 There are two basic forms of loop constructs: 
 while loops and 
 for loops.

 The major difference between these two types of loops is in 
how the repetition is controlled.
 The code in a while loop is repeated an indefinite number of 

times until some user-specified condition is satisfied. 
 By contrast, the code in a for loop is repeated a specified 

number of times, and the number of repetitions is known 
before the loops starts.



while loop
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 General form:

 The statements in the body are 
repeatedly executed as long as the 
expression expr remains true.

while expr
body

end

clear all; close all; 
  
S_X = [3 4 8]; 
p_X = [1/6 1/3 1/2]; 
  
n = 1e6;  
 
U = rand(1,n); 
V = zeros(size(U)); %Preallocation 
for k = 1:n 
    F = p_X(1); 
    m = 1; 
    while (U(k) > F) 
        m = m+1; 
        F = F+p_X(m); 
    end 
    V(k) = m; 
end 
X = S_X(V); 
  
hist(X) 
rf = hist(X,S_X)/n; 
stem(S_X,rf,'rx') 
hold on 
stem(S_X,p_X,'bo') 
xlim([min(S_X)-1,max(S_X)+1]) 
legend('Rel. freq. from sim.'... 
    ,'pmf p_X(x)') 
xlabel('x') 
grid on 
 



datasample
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clear all; close all; 
  
S_X = [3 4 8]; 
p_X = [1/6 1/3 1/2]; 
  
n = 1e6; 
  
X = datasample(S_X,n,'Weights',p_X); 
  
hist(X) 
rf = hist(X,S_X)/n; 
stem(S_X,rf,'rx') 
hold on 
stem(S_X,p_X,'bo') 
xlim([min(S_X)-1,max(S_X)+1]) 
legend('Rel. freq. from sim.'... 
    ,'pmf p_X(x)') 
xlabel('x') 
grid on 
 


